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Researchers often seek to synthesize results of multiple studies on the same topic

to draw statistical or substantive conclusions and to estimate effect sizes that will

inform power analyses for future research. The most popular synthesis approach is

meta-analysis. There have been few discussions and applications of other synthesis

approaches. This tutorial illustrates and compares multiple Bayesian synthesis

approaches (i.e., integrative data analyses, meta-analyses, data fusion using aug-

mented data-dependent priors, and data fusion using aggregated data-dependent

priors) and discusses when and how to use these Bayesian synthesis approaches to

combine studies that compare two independent group means or two matched group

means. For each approach, fixed-, random-, and mixed-effects models with other

variants are illustrated with real data. R code is provided to facilitate the implemen-

tation of each method and each model. On the basis of these analyses, we summa-

rize the strengths and limitations of each approach and provide recommendations

to guide future synthesis efforts.
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1 | INTRODUCTION

Researchers seek to combine data from multiple studies for
many reasons. For example, when several studies have
addressed the same research question, researchers may want
to combine their results to draw an overall conclusion. When
researchers have conducted pilot studies, rather than ignor-
ing their results, they often want to merge the results of those
studies with the results from formal studies. This process has
also been called data or research synthesis,1 data
integration,2 or data fusion.3

Such data syntheses offer several benefits. First, they
capitalize on the money, time, and resources invested in
the existing studies, allowing investigators to address new
questions. Second, data synthesis is an efficient way to
conduct sample size planning.4 To determine sample size,

power analyses,5 rely on estimated parameters or esti-
mated effect sizes, but these estimates are uncertain
because they are not the true/population parameters. Dif-
ferent estimates lead to different planned sample sizes,
and researchers face questions about which planned sam-
ple size should be used. Data synthesis combines perti-
nent information from existing studies and pilot studies to
provide overall estimates of population parameters/effect
sizes and thereby determine the sample size in future
research. Because the overall sample size is increased
with data synthesis, standard errors of the estimates are
decreased, and the uncertainty of sample size planning is
reduced. Third, despite being largely ignored in power
analysis research, Bayesian data synthesis provides a way
to calculate statistical power taking uncertainty into
account. Even though sample size planning can be
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conducted based on multiple studies, because of the
uncertainty of estimates, we still cannot predict what esti-
mates will be observed in a formal study. Accordingly,
even with sample size planning, conventional statistical
power is risky because it could be too low with the
planned sample size if the sample effect size in the future
study is too small.6 Bayesian power analysis that com-
bines multiple studies and also considers uncertainty in
parameter estimation can be used for sample size plan-
ning to claim statistical power with a certain assurance
level. In this paper, we will outline how to conduct such
analyses.

This paper focuses on four different approaches to data
synthesis. First, in meta-analysis, the most popular data
synthesis approach, aggregated study-specific results, such
as standardized group mean differences, are analyzed.
Second, in integrative data analysis, multiple data sets are
merged into a single data set, allowing researchers to con-
duct subsequent data analyses on all of the raw data
simultaneously; thus, all the original information is kept
and the influence of covariates at different levels can be
examined. Although the first and second approaches can
be employed in both frequentist and Bayesian frame-
works, when the model is complex, Bayesian modeling is
more feasible and less mathematically challenging because
Bayesian statistics have algorithms such as Gibbs sam-
pling and Metropolis–Hastings algorithm. More specifi-
cally, Bayesian modeling has advantages in dealing with
high-dimensional data and/or nonlinear functions because
Bayesian algorithms can avoid calculating integration and
obtaining analytical closed form. In comparing two
means, since the models are usually not very complex,
both frequentist and Bayesian estimation are applicable.
This paper presents Bayesian integrative data analysis and
Bayesian meta-analysis in the special case of comparing
two means. Illustrating the Bayesian methods in this spe-
cial case allows the paper to introduce important funda-
mental concepts without mathematical complications
inherent in more complex models (eg, multidimensional
logistic regression and multidimensional item response
theory model). The complex models would interfere with
developing a conceptual understanding of the methods.
Illustrating Bayesian synthesis approaches in a simple
model establishes a foundation for generalizing these
Bayesian methods to more complex models. The third
approach, data fusion using augmented data-dependent
priors (AUDPs), is a pure Bayesian method, in which
each study's information contributes to the inference
sequentially and the contribution of each study is summa-
rized. The fourth approach, data fusion using aggregated
data-dependent priors (AGDP), is also within the Bayes-
ian framework and uses aggregated informative priors

constructed by multiple studies. In meta-analysis and inte-
grative data analysis, information from all data sets enters
the models simultaneously, whereas in the latter two
approaches, the information of data sets is either entered
sequentially (AUDP) or summarized as priors (AGDP).
The first two approaches and latter two approaches are
not unrelated: AUDP and AGDP could either use the
models for aggregated data as in meta-analysis or use the
models for raw data as in integrative data analysis. To
provide an overall picture of these methods, the strengths
and limitations of each method are presented in Table 1
and will be elaborated further in the following sections.
In contrast to the meta-analysis, the other three
approaches are seldom mentioned in the literature or used
in practice, despite their strengths.

In the current paper, we present when and how to use
these synthesis approaches in the Bayesian framework to
combine studies that compare two independent or matched
group means, and we illustrate our work with real data.1 R
code is provided to facilitate the implementation of each
method and each model. We begin by introducing our data,
which comes from research on marital satisfaction in cou-
ples. When introducing the Bayesian synthesis approaches,
we start by introducing different models for integrative data
analysis. Then, we apply different Bayesian integrative data
analyses to the aforementioned real data. Next, different
models for meta-analysis are presented, and the Bayesian
meta-analyses are illustrated with real data. Because the
models for integrative data analysis and meta-analysis can
also be used in AUDP and AGDP, we will discuss each
model with details. Then, the AUDP and AGDP approaches
are introduced and illustrated with real data. Later, Bayesian
estimation coupled with Bayesian power is presented for
sample size planning. Finally, we offer recommendations for
future synthesis efforts.

1We did not use a simulation study to compare these approaches for several
reasons. First, no matter which approach or prior is used, the posterior mode
is a consistent estimator for a coefficient when the model is correctly
specified.7 Second, if we use informative priors that center around the true
values (equivalent to increasing prior sample size), there is no doubt that the
estimation will become better than the one using informative priors that
deviate away from the true values or using noninformative priors. We can
make such conclusions without simulation. Third, in practice, the true
values are unknown. Accordingly, researchers need to decide whether using
informative priors and how informative the priors are based on their
understanding and experience on the specific topic. Fourth, as illustrated
later, different approaches rely on different study information. Some
approaches use raw data; some use aggregated data, and some use
characteristics of studies to weight studies. It is unfair to compare methods
using richer information with the methods using sparse information. In
practice, we choose the most appropriate methods based on the available
information, and such guidelines are provided in Table 1.

DU ET AL. 37



2 | OUR REAL DATA AND
SUBSTANTIVE RESEARCH
QUESTIONS

2.1 | Data information

The analyses that follow illustrate various ways of synthesiz-
ing 11 independent data sets. Characteristics of the data sets
are presented in Table 2. All 11 data sets consist of
heterosexual, married couples, most of whom were
contacted within 6 months of their wedding date. All 11 stud-
ies administered a common measure of marital satisfaction: a
version of the Semantic Differential.8,9 Spouses were asked
to rate their marriage on a 7-point scale between each pair of
opposing adjectives (eg, hopeful–discouraging and bad–
good). Scores on each item were reverse coded as appropri-
ate, and the sum of the ratings was treated as an index of
marital satisfaction with a potential range of 15 to 105. Coef-
ficient alpha was above 0.90 for both spouses in all studies.

Before we address our substantive question, it is worth
noting that combining these 11 data sets creates a data set
with a three-level structure, in which individuals (level 1)

are nested within couples (level 2) who are nested within
studies (level 3). Because there are not enough degrees of
freedom, the discussed data synthesis approaches use paired
difference scores within couples.4 In this case, the individual
level disappears, and the data have a two-level structure
(i.e., couple level and study level). While we present ana-
lyses that treat spouses as matched pairs, we also illustrate
how to conduct Bayesian synthesis for independent groups
where we assume husbands and wives are independent

TABLE 1 Summary of integrative data analysis, meta-analysis, data fusion using augmented data-dependent priors, data fusion using
aggregated data-dependent priors, fixed-effects model, random-effects model, and mixed-effects model

Method Strengths Limitations

Integrative data analysis Straightforward; retain all the original
information; examine the influence of
the study-level, pair-level, and
individual-level covariates

Raw data are required; labor-intensive,
time-consuming, and costly; the
measurements used across studies
should be the same or can be equated

Meta-analysis Only require sample effect sizes and
sample sizes; Allow different
measurements across studies; less
labor-intensive, less time-consuming,
and cheaper

The normality approximation is good only
when the per-study sample size is
relatively large; no individual- or
pair-level covariates; less powerful

Data fusion using augmented
data-dependent priors (AUDPs)

The contribution of each study is clearly
summarized; accommodate raw data or
aggregated data

The order of the data sets in entering the
analysis could influence results, thus
sensitivity analysis is needed

Data fusion using aggregated
data-dependent priors (AGDPs)

An intuitive way to construct prior Lose precision; results depend on which
studies to construct the priors and
which study to serve as the formal
study; thus, it is fundamentally flawed

Model Strengths Limitations

Fixed-effects models A simple model Fail to consider between-study
heterogeneity

Random-effects models Take between-study heterogeneity into
account

The estimate of between-study
heterogeneity will have poor precision
when the number of studies is very
small

Mixed-effects models Consider covariates to further explain
population discrepancies

The estimate of parameters will have poor
precision and nonconvergence may
occur when the number of studies is
very small and/ or number of covariates
is large

4This paper considers fixed-effects models that constrain between-study
heterogeneity to be 0 and random-effects models that freely estimate
between-study heterogeneity. However, the extremely small level 1 sample
size (only two individuals per couple) fails to provide enough pieces of
information to allow a three-level model, which means that the model will
be unidentified. If we simply constrain the variances at the second level at
0 (i.e., the between-couple variances), the between-couple covariances are
the same as the within-couple covariances, which ignores within-couple
interdependence. An exception is the fixed-effects model where there is no
between-study heterogeneity, for which a two-level model that considers an
individual-level residual variance and a couple-level variance can be applied
to the raw scores, and the model is identified. The limited degrees of
freedom is a classic problem in dyadic data. We refer the interested reader
to Du and Wang10 and Kenny et al.11
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within each study. In this case, couple level disappears, and
the data structure changes to two levels (i.e., individual level
and study level). We want to emphasize that assuming inde-
pendent husbands and wives is only for pedagogical pur-
poses and the related models and methods are only
appropriate when the two groups are really independent; in
actual research, husbands and wives should be considered as
interdependent pairs as illustrated in the paper.

2.2 | Substantive question

Within each study, the presence of marital satisfaction data
provided by each spouse allows us to evaluate a common
substantive question: on average, do husbands and wives
differ in their evaluations of their relationship? Hundreds of
studies of married couples have collected data relevant to
this issue, but to date, attempts at synthesizing this literature
have relied exclusively on meta-analysis.12 In the analyses
that follow, we illustrate several Bayesian data synthesis
approaches including Bayesian meta-analytic techniques.

3 | INTEGRATIVE DATA ANALYSIS
MODELS

When the original data from individual studies are available,
it is straightforward to conduct an integrative data analysis,
also referred to as individual participant-level data meta-anal-
ysis, pooled analysis, or mega-analysis.13,14 In an integrative
data analysis, all the raw data from different studies are mer-
ged into a large data set and are then analyzed as a whole.
Integrative data analysis is not widely used in psychology,
with some exceptions.15-17 One prerequisite of integrative
data analysis is that the measurements (i.e., questionnaire or
survey) used across studies are the same or can be equated.
When studies to be combined use different measurements,
equating is necessary using either item response theory or
classical test theory to ensure that scores are comparable
across studies.16,18 Because this paper uses studies that all
administered the same measure of marital satisfaction, equat-
ing will not be discussed in detail here. With this prerequisite,
a traditional analysis can be applied based on the pooled data.

TABLE 2 Characteristics of 11 independent samples of married couples

PI N Location Year Initiated Compensation Eligibility Criteria Funding Source

Thomas N.
Bradbury

60 Los Angeles, CA 1991 $50 First married, childless, newlyweds
married less than 6 months

University of
California, Los
Angeles

Thomas N.
Bradbury

172 Los Angeles, CA 1993 $75 First married, childless, newlyweds
married less than 6 months

NIMHa

Benjamin R.
Karney

82 Gainesville, FL 1998 $50 First married, childless, newlyweds
married less than 6 months

University of Florida

Benjamin R.
Karney

169 Gainesville, FL 2001 $70 First married, childless, newlyweds
married less than 6 months

NIMHa

James K.
McNulty

72 Mansfield, OH 2003 $60 First married, children allowed,
newlyweds married less than
6 months

University of Ohio

Lisa A.
Neff

61 Toledo, OH 2005 $70 First married, childless, newlyweds
married less than 6 months

University of Toledo

James K.
McNulty

135 Knoxville, TN 2006 $80 First married, childless, newlyweds
married less than 6 months

NICHDa

Andrea L.
Meltzer

113 Dallas, TX 2013 $100 First marriage, newlyweds married
less than 6 months

Southern Methodist
University

James K.
McNulty

119 Tallahassee, FL 2013 $100 Remarriages allowed, children
allowed, newlyweds married less
than 3 months

NSFa

Andrea L.
Meltzer

99 Tallahassee, FL 2016 $100 Remarriages allowed, newlyweds
married less than 6 months

Florida State
University

James K.
McNulty

143 Tallahassee, FL 2016 $50 Married couples (not newlyweds),
remarriages allowed, children
allowed

DoDa

Abbreviations: N, the number of couples; NICHD, Eunice Kennedy Shriver National Institute of Child Health and Human Development; NIMH, National Institute of
Mental Health; NSF, National Science Foundation; DoD, Department of Defense.
aExtramural funding.

DU ET AL. 39



When pooled data come from multiple studies, analysis
options include fixed-effects, random-effects, and mixed-
effects models. The strengths and limitations of each model
are provided in Table 1. Fixed-effects models assume all
studies have the same fixed true parameters, whereas
random-effects models assume true parameters are a random
sample from the population of parameters, and thus, dif-
ferent studies differ in their true parameters.19,20 If we
incorporate study-level covariates (eg, sampling and
design characteristics) and/or individual-level covariates
(eg, age, education level, and socioeconomic status), pop-
ulation discrepancies could be explained by the covariates
to some degree. This model is referred to as a mixed-
effects model.20,21 In addition, study-level covariates such
as birth cohort and year of experiments provide a way to
distinguish cohort effects from age effects. Compared
with fixed-effects integrative data analysis, random-effects
integrative data analysis and mixed-effects integrative data
analysis are seldom discussed.13

In practice, for both integrative data analysis and meta-
analysis, researchers can test for between-study variance to
help choose between random-/mixed-effects and fixed-
effects models. If the between-study variance is statistically
significant, a random-effects model can be used, and a
mixed-effect model can be further considered to explore
the influence of covariates; otherwise, a fixed-effects
model should be used. However, the test for between-
study variance may not be powerful enough to detect het-
erogeneity. The setup of the random- and mixed-effects
model is more general and flexible. In addition, from a
practical perspective, it would be unlikely that real-life
studies are homogeneous, making τ2=0 an implausible
assumption.22-24 Therefore, even when the test for
between-study variance is significant, researchers may still
prefer to use the random- or mixed-effects model. We
will introduce each model when the two groups are inde-
pendent or matched by pairs, separately.

3.1 | Testing mean differences for independent
groups

Suppose there are J studies comparing two independent
group means. For study j, group 1 has a sample size of n1j,
and group 2 has a sample size of n2j. The null hypothesis is
that the population mean of group 1 (μ1) equals the popula-
tion mean of group 2 (μ2) averaging over studies,
H0:μ1−μ2=0.

3.1.1 | Fixed-effects integrative data analysis

A fixed-effects integrative data analysis assumes that there
is no between-study heterogeneity. After pooling the data

sets, the subscript j is not needed; the individual i's score
from group 1 is denoted as y1i, and the individual i's
score from group 2 is denoted as y2i. Thus, it is just an
independent t test based on the pooled data, y1is and y2is,
which also can be written as a simple regression.5 When
the data from two groups are normally distributed with
equal variance, we assume that y1i�N(μ1,σ

2) and
y2i�N(μ2,σ

2). When data from two groups are normally
distributed but with unequal variances, we assume that
y1i �Nðμ1,σ21Þ and y2i �Nðμ2,σ22Þ.

3.1.2 | Random-effects integrative data
analysis

For random-effects integrative data analysis, multilevel
modeling is performed to take the between-study hetero-
geneity into account. Let Gij be an indicator variable for
the two groups, whereby i=1,…,(n1j+n2j) indicates partici-
pant in each study, and j=1,…,J indicates study. When a
participant is from group 1 and study j, Gij=1; otherwise,
Gij=0. A two-level model is defined as follows:

yij = β0j + β1jGij + ϵij

β0j = β00 + u0j
β1j = β10 + u1j

, ð1Þ

where yij is the dependent variable, ϵij is the level
1 residual with distribution ϵij �N 0,σ2ϵ

� �
, β0j is the mean of

group 1 in the jth study, β00 is the overall mean of
group 1 across studies (i.e., population grand mean of group
1), β1j is the group mean difference in the jth study, β10 is
the group mean difference between groups 1 and
2 across studies (i.e., population group mean difference),

u0j and u1j are the level 2 residuals, and
u0j
u1j

� �
�

MN
0

0

� �
,
P

s =
σ2u0 σu01

σu01 σ2u1

 ! !
represents the between-

study heterogeneity in the means of group 1 and in the mean
differences between groups 1 and 2.

3.1.3 | Mixed-effects integrative data analysis

For mixed-effects integrative data analysis, we consider
both study-level covariates (eg, the year of survey and
site) and individual-level covariates (eg, education level)
to further explain population discrepancies at different

5We can assume a simple regression with a binary predictor (when a
participant is from group 1, Gi=1; otherwise, Gi=0), yi=β0+β1Gi+ϵi. β1 is
the group mean difference (i.e., μ1−μ2).
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levels (i.e., within-study variance and between-study vari-
ance), compared with random-effects integrative data anal-
ysis, which is a multilevel empty model (i.e., no
predictors). Thus, Model (1) changes to the following:

yij = β0j + β1jGij + β2jXij + ϵij

β0j = β00 + β01Zj + u0j
β1j = β10 + β11Zj + u1j
β2j = β20 + β21Zj + u2j

, ð2Þ

where β00 is the overall mean of group 1 after controlling for
an individual-level covariate Xij and a study-level covariate
Zj by fixing them at 0, β01 is the effect of the study-level
covariate Zj on the scores of group 1, β10 is the group
mean difference between groups 1 and 2 after controlling
for Xij and Zj by fixing them at 0, β11 is the effect of Zj
on the differences between groups 1 and 2, β20 is the effect
of the individual-level covariate Xij, β21 is the cross-level
interaction effect of the two covariates Xij and Zj, u0j, u1j,

and u2j are the level 2 residuals, and

u0j
u1j
u2j

0B@
1CA�

MN

0

0

0

0B@
1CA,
P

s =

σ2u0 σu01 σu02

σu01 σ2u1 σu12

σu02 σu12 σ2u2

0B@
1CA

0B@
1CA represents the

between-study heterogeneity in the intercepts of group 1, in
the intercept differences between groups 1 and 2, and in the
effects of Xij. Different ways of centering Xij and Zj will
change the research question that β10 answers. Without cen-
tering, β10 is the group mean difference when Xij and Zj are
zero; with centering, β10 is the group mean difference when
Xij and Zj are equal to the values that they are centered
at. There are different ways to center Xij and Zj. For example,
we can center Xij and Zj at their minimal values, in which
case β10 is the group mean difference between groups 1 and
2 when Xij and Zj are at their minimal values. We can center
Xij at its grand mean across individuals and studies and cen-
ter Zj at its mean, in which case β10 is the group mean differ-
ence between groups 1 and 2 when Xij and Zj are at their
grand means. In addition, we can center Xij at its study-level
mean across individuals within each study and center Zj at
its mean, in which case β10 is the group mean difference
between groups 1 and 2 when Xij is at the study-level mean
and Zj is at the grand mean.

Model (2) assumes that the individual-level covariate Xij

has the same effect on both groups. To allow Xij to have dif-
ferent effects on different groups, an interaction term GijXij

can be added to the level 1 equation in Model (2). Then, we
have two more fixed effects: β30 is the effect of Xij on the
group difference, and β31 is the interaction effect of Xij and
Zj on the group difference.

3.2 | Testing mean differences for matched
groups

The examined groups are not always independent when
comparing two group means. There are cases in which par-
ticipants in two groups are matched in some way such as
twins and couples or when each individual is measured
twice under different experimental conditions. The correla-
tion between the two members within pairs influences the
results in the matched group tests. Suppose there are
J studies of comparing two matched group means. For study
j, the number of pairs is nj, and the paired difference is com-
puted as the difference within the dth pair, ydj=y1dj−y2dj.
The null hypothesis is that the population group mean differ-
ence between groups 1 and 2 averaging over studies is 0.

3.2.1 | Fixed-effects integrative data analysis

A fixed-effects integrative data analysis that assumes the
same matched group difference across studies employs a
paired t test. After pooling the data from multiple studies,
the subscript j is not needed; the difference scores are den-

oted as yd, and the total number of pairs is n=
PJ

j=1nj. The

assumption of paired difference data is yd�N(μraw.d,σ
2).

3.2.2 | Fixed-effects integrative data analysis
with between-pair variance

A fixed-effects integrative data analysis assumes no
between-study heterogeneity. Thus, we have enough degrees
of freedom to estimate both the between-pair variance and
individual-level residual variance. In contrast to the other
models for matched groups, we can directly use the raw
score for each individual instead of the paired differences.
Because no between-study heterogeneity is assumed, the
subscript i indicates individual, and the subscript d indicates
dyad/pair, and there is no need to distinguish among differ-
ent studies. Then, the model is as follows:

yid = β0d + β1dGid + β2dXid + β3dGidXid + ϵid

β0d = β00 + β01Wd + u0d
β1d = β10 + β11Wd

β2d = β20 + β21Wd

β3d = β30 + β31Wd

, ð3Þ

where β00 is the overall mean of group 1 after controlling for
an individual-level covariate Xid and a pair-level covariate
Wd by fixing them at 0, β01 is the effect of the pair-level
covariate Wd on the scores of group 1, β10 is the group mean
difference between groups 1 and 2 conditional on specific
levels of Xid and Wd, β11 is the effect of Wd on the differ-
ences between groups 1 and 2, β20 is the effect of the
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individual-level covariate Xid on group 1, β21 is the impact
of the pair-level covariate Wd on the effect of Xid in group
1, β30 is the effect of Xid on the group difference, and β31 is
the interaction effect of Xid and Wd on the group difference.
Centering Xid and Wd and different ways of centering will
change the meaning of coefficients and answer different
research questions. Because of the extremely small level
1 sample size (i.e., 2), we do not have enough degrees of
freedom to estimate all the level 2 variances. Thus, only
u0d �N 0,σ2u0

� �
, which represents the between-pair heteroge-

neity in the pair-specific intercepts of group 1, is estimated.

3.2.3 | Random-effects integrative data
analysis

A random-effects integrative data analysis that considers
between-study heterogeneity uses multilevel modeling for
the paired difference data:

ydj = β0j + ϵdj

β0j = β00 + u0j
, ð4Þ

where ydj is the pooled paired differences after combining
studies, such that the subscript d indicates dyad/pair and the
subscript j indicates study, ϵdj is the level 1 residual with dis-
tribution ϵdj �N 0,σ2ϵ

� �
, β00 is the overall group mean differ-

ence across studies, and u0j is the level 2 residual with
distribution u0j �N 0,σ2u0

� �
, which represents the between-

study heterogeneity in group mean differences.

3.2.4 | Mixed-effects integrative data analysis

A mixed-effects integrative data analysis does not consider
the individual-level covariates for matched pairs because dif-
ference scores are directly used. Thus, with a pair-level
covariate Xdj and a study-level covariate Zj, a multilevel
model is as follows:

ydj = β0j + β1jXdj + ϵdj

β0j = β00 + β01Zj + u0j
β1j = β10 + β11Zj + u1j

, ð5Þ

where β00 is the overall group mean difference after control-
ling for Xdj and Zj by fixing them at 0, β01 is the effect of Zj
on the group difference, β10 is the effect of Xdj, β11 is the
cross-level interaction effect of Xdj and Zj, u0j and u1j are

level 2 residuals, and var
u0j
u1j

� �
=

σ2u0 σu01

σu01 σ2u1

 !
represents

the between-study heterogeneity in group mean differences
and effects of Xdj. Like in the independent groups case,

centering Xdj and Zj and different ways of centering will
change the meaning of coefficients and answer different
research questions.

4 | BAYESIAN INTEGRATIVE DATA
ANALYSIS WITH OUR REAL DATA

The fixed-effects integrative data analyses, random-effects
integrative data analyses, and mixed-effects integrative data
analyses can be implemented in both frequentist and Bayes-
ian frameworks. In the frequentist framework, parameters
(eg, β10 in Equation (2)) are treated as fixed constants,
whereas in the Bayesian framework, parameters are treated
as random variables. Thus, in Bayesian modeling, prior dis-
tributions for unknown parameters need to be specified
based on the prior knowledge of the parameters (f(θ)), and
likelihood function given the observed data is constructed
based on models (L θjyð Þ).7 With both the likelihood and the
priors defined, the posterior distributions of parameters are

derived via Bayes’ theorem, f θjyð Þ= L θjyð Þf θð Þ
f yð Þ / L θjyð Þf θð Þ.

To sample from posterior distributions without deriving
the analytical closed form, Markov chain Monte Carlo
(MCMC) sampling is usually used by software such as
BUGS and R packages such as rjags.25 In MCMC sam-
pling, a number of early iterations before convergence need
to be discarded since they are not representative samples of
the target distribution.7,26 This period is called a burn-in
period. In some software and R packages (eg, rjags), there is
an initial adaptive period during which MCMC sampling is
tuned to maximize the efficiency.25 Additionally, posterior
samples are autocorrelated within chains because of the iter-
ative sampling.26 To save computation storage, a thinning
period is used by taking every kth sampled value (i.e., a thin-
ning period of k). The convergence of the MCMC algorithm
can be assessed by visual inspection (i.e., trace plots) as well
as statistical tests for each parameter. Gelman and Rubin's
test is one of the widely used diagnostic tests and requires
more than one independent MCMC chains with different
starting values.27 In Gelman and Rubin's test, a potential
scale reduction fact (PSRF) value close to 1 and the upper
limit of an interval estimate smaller than 1.1 usually indicate
convergence.

In all of the discussed methods, we can calibrate posterior
inferences to the frequentist framework: the frequentist sta-
tistics provide a useful approach for evaluating the properties
of Bayesian inferences.7,28 That is, posterior samples allow
us to compute the posterior mean, posterior mode, quantile-
based probability (QBP) interval, and highest posterior den-
sity (HPD) interval. The posterior mean and posterior mode
provide point estimates of unknown parameters. In particu-
lar, the posterior mode is the value that provides the
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maximum posterior probability. The QBP interval and HPD
interval are credible intervals, and they provide interval esti-
mates within which an unknown parameter value falls with
a certain probability (eg, 95%26). More specifically, the QBP
interval is constructed by assuming equal probability in each
tail, and the HPD interval is the narrowest interval that con-
tains the values of highest posterior probability density
based on the posterior samples. In addition, the posterior
standard deviation of the posterior samples is calculated,
which can be used to calculate Monte Carlo standard error.
The R code for summarizing all the aforementioned statistics
and conducting all the following analyses is provided in the
Supporting Information (some representative code is pres-
ented in Appendix A). All results of integrative data ana-
lyses are summarized in Table 3.

Our goal is to explore the difference between husbands’
and wives’ marital satisfaction using data from 11 studies.
First, assuming husbands and wives are independent, Bayes-
ian integrative data analyses for independent groups are
illustrated. Then, considering husbands and wives are paired
as couples, Bayesian integrative data analyses for matched
groups are illustrated. We also conduct the corresponding
traditional frequentist analyses (see the Supporting Informa-
tion for details), and since noninformative priors are used,
the results from the Bayesian analyses and frequentist ana-
lyses are consistent. We illustrate the analyses with fixed-
effects, random-effects, and mixed-effects models. Although
we present all of the results, it is not very meaningful to
compare the estimated coefficients across models because
the meaning of coefficients varies in different models and
they answer different research questions. Therefore, we do
not anticipate that the results will be exactly the same across
the models. Although researchers typically choose a model
based on their assumptions or theories, another way to think
about these models is to treat them as a sensitivity analysis.
We conduct a sensitivity analysis with different models to
investigate whether and how the estimate of the group mean
difference varies under different assumptions.

4.1 | Testing mean differences for independent
groups

As mentioned in the preceding section, the general process
in practice is to begin with conducting a random-effects
model. If the between-study variances are significant, we
adopt the mixed-effects model to explore the influence of
covariates; if the between-study variances are not signifi-
cant, we adopt the fixed-effects model. One may directly use
a fixed-effects model if there is a strong assumption for
homogeneity. The illustration of different models in the fol-
lowing sections does not follow the general process; weT
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begin with the fixed-effects model because it is the
simplest model.

4.1.1 | Fixed-effects integrative data analysis

For a Bayesian fixed-effects integrative data analysis that
compares means from husbands and wives with equal vari-
ance, y1i�N(μ1,σ

2) (wives’ scores) and y2i�N(μ2,σ
2) (hus-

bands’ scores), we employ mutually independent priors on
μ1 and μ2 and the common variance σ2:

f ðμ1Þ or f ðμ2Þ�Nð0, aÞ, ð6Þ

f ðσ2ÞeInv−Gammaðb, bÞ: ð7Þ

The specified priors are the semi-conjugate priors for normal
likelihood, which are widely used in Bayesian modeling.
The priors are called semi-conjugate because the posterior
distribution of each of the parameters would be in the same
family as the prior distribution given that all the other
parameters are known.29 When a is large (eg, 10 000) and
b is small (eg, 0.001), these prior distributions are consid-
ered noninformative as long as the population variance, σ2,
is not very close to 0.7 To answer our research question
whether there is a group difference, a new parameter equal
to the group mean difference, δraw=μ1−μ2, is created in
order to make direct inferences from the posterior samples.

In real data, missing data are unavoidable due to many
reasons. For ignorable missingness in the outcome variable,
it is not necessary to specify a model and priors for the miss-
ing data. If the values are indicated as missing (i.e., NA),
BUGS, and rjags will generate predictive missing data from
the posterior predictive distributions.30 Thus, we denote the
missing data in y1i and y2i as NA.

The R code using rjags25 to conduct the Bayesian fixed-
effects integrative data analysis, construct the plots, and
summarize the results is displayed in the Supporting Infor-
mation. Two MCMC chains for the unknown model parame-
ters (μ1, μ2, and σ2) and the parameter that is created to
answer our research question (δraw) are generated with dif-
ferent sets of starting values. Note that in rjags and BUGS,
prior distributions are specified for precision parameters (the
inverse of variance or the inverse of variance-covariance
matrix) instead of for variance parameters. For each chain,
the total number of MCMC iterations was 3000 after an
adaptive period of 100, a burn-in period of 1000, and a thin-
ning period of 5. Gelman and Rubin's test27 indicates con-
vergence for all parameters. Therefore, the posterior samples
from the two chains are combined to calculate the posterior
mean, posterior mode, posterior standard deviation, QBP
interval, and HPD interval. In this example, we found the
posterior modes and posterior means are similar, and the

HPD intervals and QBP intervals are similar. The posterior
modes and 95% HPD intervals are presented in Table 3.
Since the HPD interval does not contain 0, we can conclude
that wives have significantly higher marital satisfaction than

husbands, δ̂raw =1:08 with an HPD interval of (0.08–1.81).
Without assuming equal variances for the two groups,

y1i �Nðμ1,σ21Þ and y2i �Nðμ2,σ22Þ, prior distributions need
to be specified for σ21 and σ22 separately. We use the same
prior as in Equation (7) for both σ21 and σ22. Similar to the
results with equal variance, wives have significantly higher

marital satisfaction than husbands, δ̂raw =0:95 with an HPD
interval of (0.09–1.87).

4.1.2 | Random-effects integrative data
analysis

In this paper, Gij=0 for wives, and Gij=1 for husbands. For
the random-effects integrative data analysis model in
Equation (1), the parameter indicating the average difference
between husbands and wives across studies is β10. We use
an unstructured covariance structure for Σs and infer the
between-study variance in the means of husbands (σ2u0), the
between-study variance in the mean differences between
husbands and wives (σ2u1), and the correlation

ρ01 =
σu01ffiffiffiffiffiffiffiffiffi
σ2u0σ

2
u1

p
� �

. We specify normal priors for the fixed

effects (β00 and β10) as in Equation (6), an inverse-gamma
prior for the level 1 residual variance (σ2ϵ ) as in Equation (7),
and an inverse-Wishart prior for the level 2 variance-
covariance matrix (Σs), f(Σs)�Inv−Wishart(m,V). The speci-
fied priors are the widely used semi-conjugate priors for
multilevel models with normal likelihood. a is set at 104;
b is set at 0.001; m is set as the number of dimension of the
level 2 covariance matrix Σs (2 in this example), and V is
specified as an identity matrix. The HPD interval contains

0, cβ10 = 0:87 with HPD interval (−0.12 to 2.05).7 The results
indicate that after considering between-study heterogeneity,
there is not enough evidence to reject the null hypothesis
that husbands and wives have the same marital satisfaction.

4.1.3 | Mixed-effects integrative data analysis

We consider covariates at different levels in the mixed-
effects integrative data analysis. To address the possibility of
cohort effects on gender differences in marital satisfaction,

7In the discussed analyses, the confidence intervals of the fixed-effects
models are slightly narrower than those from the random-effects models
because when the random-effects model is true, fixed-effects models would
tend to underestimate standard errors of fixed effects and yield narrower
confidence intervals. From a practical perspective, it is unlikely that real-life
studies are homogeneous (i.e., fixed-effect models) because it is almost
impossible that the between-study variance would be exactly 0.
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we treat the year that each study was initiated as a study-
level covariate. To address the possibility that gender differ-
ences are associated with social class or differences in class
between spouses, we treat each spouse's years of education
as an individual-level covariate. To better interpret the coef-
ficients, the year of survey is centered at the earliest year
(1991), and the years of education is centered at the mini-
mum value (8) in all of the following analyses. We also can
center the year of survey and the years of education at differ-
ent values, which will change the meaning of coefficients
and answer different research questions. When there are
missing data in covariates, the simplest solution is listwise
deletion by deleting the individuals who have missing
covariates, but this requires ignorable missingness; other-
wise, it will cause biased estimation. Another solution in
Bayesian modeling is to set missing covariates as NA, and
because covariates are exogenous variables, we need to
(a) specify a model to capture why the covariates are missing
and how the covariates can be generated, (b) specify priors
for the parameters in the missingness model, and
(c) estimate this missingness model. In this example, we use
listwise deletion. The generalization to the latter solution is
straightforward by adding the needed missingness model
based on the assumption and adding the corresponding
priors (for more details, refer to Lunn et al30 and Enders
et al31).

First, we consider Model (2) where years of education
are assumed to have the same effect on husbands and wives.
The fixed effects (β00 to β21) are specified to have normal
priors, the level 2 variance-covariance matrix (Σs) has an
inverse Wishart prior, and the level 1 residual variance (σ2ϵ)
has an inverse-gamma prior. The parameter of interest is β10,
the group mean difference between husbands and wives con-
ditional on the specific levels of the covariates. We foundcβ10 = 2:10 with an HPD interval of (0.17–4.10), indicating
that wives have significantly higher marital satisfaction than
husbands after controlling for the years of education and the
year of survey. Although this conclusion is similar to the
conclusions of the fixed-effects integrative data analyses, the
difference between husbands’ and wives’ marital satisfaction
when taking the years of education, the year of survey, and
between study heterogeneity into account (i.e., 2.10) is
larger than the ones in fixed-effects model (i.e., 1.08 and
0.95), but as mentioned above, it is not surprising that the
results are not the same. More specifically, the marital satis-
faction difference is larger when we are conditioning on the
couples with 8 years of education and taking survey in 1991,
compared with averaging over the years of education and
the year of survey in the random-effects model. We can also
center the year of survey at the latest year (2016) and center
the years of education at the maximum value (24). Then, β10
becomes the group mean difference between husbands and

wives when we are conditioning on the couples with 24 years

of education and taking survey in 2016. And cβ10 = −0:11
with an HPD interval of (−1.67 to 1.61), which is not
significant.

Second, we allow the effect of years of education to dif-
fer between husbands and wives. We specify the same priors
as in Model (2). The group mean difference between hus-
bands and wives after controlling for the covariates, β10, is
estimated to be −1.68 with an HPD interval of (−7.62 to
5.64). Thus, after considering the heterogeneous effect of the
years of education by adding more interaction terms, wives
and husbands no longer differ in marital satisfaction. The
wider credible interval of marital satisfaction difference is
probably due to the collinearity issue caused by the interac-
tion, GijXij; therefore, the estimation is less efficient because
of the large standard error. Instead of centering the
covariates at their minimal values, we can consider centering
the covariates at their means to solve the collinearity issue to
some degree. We first center the years of education at its
grand mean (16.07) and center the year of survey at its mean
(2005). The group mean difference between husbands and
wives when their year of education is 16.07 and the year of
survey is 2005 is estimated to be 0.96 with an HPD interval
of (−0.10 to 1.98). Then, we center the years of education at
its study-level mean and center the year of survey at its
mean. The group mean difference between husbands and
wives when their years of education is the mean of years of
education in each study and the year of survey is 2005 is
estimated to be 0.92 with an HPD interval of (−0.08 to
1.97).

In summary, depending on whether allowing between-
study heterogeneity, whether considering the effects of
covariates, how to center the covariates, and how to specify
the influence of covariates, the inference of difference
between husbands’ and wives’ marital satisfaction varies.
This implies that researchers need to choose the suitable
model based on their research interests and assumptions
because the relatively widely used fixed-effects integrative
data analysis13 may provide misleading results.

4.2 | Testing mean differences for matched
groups

4.2.1 | Fixed-effects integrative data analysis

Considering that husbands and wives are from the same
families, paired difference data are computed as the
wives’ scores minus their husbands’ scores within couples
(yd). The results are presented in Table 3. μ̂raw:d is 1.03
with an HPD interval of (0.44–1.67), which indicates that
wives have significantly higher marital satisfaction than
their husbands.
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4.2.2 | Fixed-effects integrative data analysis
with between-pair variance

We use Model (3) to estimate the between-pair variance and
assume that there is no between-study heterogeneity. We
consider years of education as an individual-level covariate.
Since there is no couple-level covariate in the current real
data, only β00, β10, β20, and β30 are estimated. The parameter
that indicates the overall difference between husbands and

wives across studies and pairs is β10. cβ10 is −0.31 with an
HPD interval of (−2.46 to 2.32). Therefore, we fail to find
significantly different marital satisfaction between husbands
and wives when conditioning on the year of survey in 1991,
which is different from the result without considering
between-pair variance.

4.2.3 | Random-effects integrative data
analysis

For the random-effects integrative data analysis model in
Equation (4), the parameter that indicates the overall differ-

ence between husbands and wives across studies is β00. cβ00
is 1.07 with an HPD interval of (0.21–1.81), which indicates
that wives have significantly higher marital satisfaction
than their husbands when considering between-study
heterogeneity.

4.2.4 | Mixed-effects integrative data analysis

There is no couple-level covariate in the data, and we con-
sider year that each study was initiated as a study-level

covariate. cβ00is 2.23 with an HPD interval of (0.82–3.54).
That is, wives have significantly higher marital satisfaction
than their husbands when conditioning on the year of survey
in 1991, which is similar to the conclusions from the fixed-
and random-effects analyses.

In summary, similar to the independent group case, the
inference of the difference in marital satisfaction between
husbands and wives varies as function of whether allowing
between study heterogeneity, whether allowing between pair
heterogeneity, and whether considering the effects of
covariates.

5 | META-ANALYSIS MODELS

Sometimes the original raw data are inaccessible, but
instead, the aggregated data such as effect sizes are pres-
ented in the literature. In this case, meta-analyses can be
applied to gather information from effect sizes. There has
been considerable discussion comparing integrative data
analysis and meta-analysis.13,32-35 Integrative data analysis
requires more efforts in contacting authors, collecting data,

and cleaning data than meta-analysis, making it more labor-
intensive, time-consuming, and costly. But on the other
hand, Cooper and Patall13 and Lambert et al36 found that
meta-analysis has smaller power compared with integrative
data analysis. Similar to the integrative data analyses,
depending on whether between-study heterogeneity and
covariates are considered, there are fixed-effects, random-
effects, and mixed-effects models. We will present these
three models when comparing means from independent
groups and when comparing means from matched groups,
separately. The null hypothesis is that the overall population
effect size is 0, H0 : μδ = 0.

5.1 | Testing mean differences for independent
groups

For studies that test mean differences for two independent
groups, a widely used effect size is the standardized mean

difference. For study j, the observed effect size is gj =
�y1j−�y2j

sj
,

where �y1j and �y2j are the sample means of the two groups

respectively, sj is the sample standard deviation calculated

by sj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1j−1Þs21j + ðn2j−1Þs22j

n1j + n2j−2

r
, s21j and s22j are the sample group

variances of two groups respectively, and n1j and n2j are the
sample sizes of two groups, respectively. And the observed
effect size gj needs to be corrected to obtain an
unbiased estimate of the true effect size δj, which is

di = 1− 3
4ðn1j + n2jÞ−9

� �
gi.

19

5.1.1 | Fixed- and random-effects meta-
analysis

Suppose there are J unbiased effect size estimates dj (j=1,…,
J). A typical random-effects meta-analysis model19,37 is as
follows:

dj = δj + ej
δj = μδ + uj

ej �N 0, σ2j
� �

uj �Nð0, τ2Þ

, ð8Þ

where ej is the deviation of the observed study effect size di
from the true/population study effect size δj, and uj is the
deviation of the true study effect size δj from the overall
population effect size μδ. The variance of ej represents
within-study sampling variability of study j,

σ2j =
n1j + n2j
n1jn2j

+
δ2j

2ðn1j + n2jÞ. The normal distribution of ej is based

on a large sample size approximation, and the normality
approximation is good when the true effect size is small and
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the per-study sample size is relatively large.19,38 The vari-
ance of uj and τ2 represents between-study heterogeneity.
When τ2 is 0, the model in Equation (8) becomes a fixed-
effects model, meaning that the studies are homogeneous
with the same true effect size δi=μ.

19

5.1.2 | Mixed-effects meta-analysis

A mixed-effects meta-analysis model (also called meta-
regression model) with a study-level covariate Zj

21) is as
follows:

dj = δj + ej
δj = μδ + βZj + uj

ej �N 0, σ2j
� �

uj �Nð0, τ2Þ

, ð9Þ

where β is the regression coefficient for Zj. Centering Zj and
different ways of centering will change the meaning of coef-
ficients and answer different research questions.

5.2 | Testing mean differences for matched
groups

For studies that test mean differences for two matched
groups, the standardized matched mean difference in study

j is computed as gj =
�ydj
sdj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1−rið Þp

, where �ydj is the sample

mean of paired differences, sdj is the sample standard devia-
tion of paired difference data, and rj is the sample correlation
within pairs in study j.39 The corrected unbiased estimate of

the true effect size δj is dj = 1− 3
4nj−9

� �
gi.

19

5.2.1 | Fixed-, random-, and mixed-effects
meta-analyses

A random-effects meta-analysis model is the same as Equa-
tion (8) except that the within study sampling variance40 is

σ2j =
2 1−ρjð Þ

nj
+

δ2j
2nj
, where ρj is the population correlation

within pairs. In practice, we can substitute dj and rj for δj
and ρj, respectively. Similar to the independent groups case,
a mixed-effects meta-analysis model can be applied to incor-
porate study-level covariates.

Comparing meta-analysis that is based on aggregated
data with integrative data analysis that is based on original
raw data, there are three noticeable differences. First,
individual-level covariates cannot be considered in meta-
analysis. When the observed effect size (i.e., aggregated
data) is calculated in meta-analysis, the original information
for individuals is abandoned and cannot enter the later steps.
Second, meta-analysis does not require that the

measurements that are used for outcomes are the same
across studies or can be equated. Although different mea-
surements have different reliabilities, which lead to different
levels of attenuation of the true effect sizes, in meta-analysis
each effect size can be individually corrected for the attenua-
tion based on the measurement, and thus, the effect of mea-
surement error can be eliminated (for more details, refer to
Schmidt and Hunter41). Or in the Bayesian framework, a
power prior can adjust the estimation of the population effect
size by down weighting the sample effect sizes with low-
scale reliabilities.42 Third, meta-analysis models are based
on a large sample size normality approximation. That is, the
analytical form of the normal distribution of residuals is only
good when the population effect size is small and per-study
sample size is relatively large.19,38 Different from meta-anal-
ysis, the distributions of residuals in the models of integra-
tive data analysis are assumed to be normal, and the
variances will be freely estimated.

5.3 | Power prior

A power prior is proposed to control the contribution of the
information from data, which is accomplished by giving dif-
ferent studies different weights. In particular, weight is given
based on the study characteristics that are not the same
across studies, such as study quality indicators. Mathemati-
cally, we raise the likelihood of data to a power
a (i.e., L θjDð Þa)43-46 The power prior enables the previously
entered data to generate a data-dependent prior that is
weighted based on the power. The general form of power
prior is given by the following:

f θjDð Þ/L θjDð Þaf θð Þ, ð10Þ

where D indicates a specific historical data set, θ indicates
the parameters of interest, and a2 0,1½ � controls the impor-
tance of historical data or researchers’ confidence about the
quality of the data. If a=1, Equation (10) is the traditional
Bayes’ theorem, and all the information from the historical
data contributes to the posterior distribution. If a=0,

L θjDð Þ0 = 1, and the information from the historical data is
not used at all. Thus, the power prior is a posterior distribu-
tion based on the historical data by controlling the informa-
tion of the data.

In this paper, we use the power prior focusing on aggre-
gated data. In a meta-analysis, there are multiple historical
data sets (i.e., estimated study effect sizes). For each data
set, we would like to control its contribution based on its
study quality. In fitting a normal distribution, raising the

likelihood for study j, L θjDj
� �

=N θ, σ2j
� �

, to a power aj is

almost equivalent to scaling the likelihood to
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N θ,
σ2j
aj

� �
.30,42,43 This conclusion can be applied to standard-

ized mean differences and standardized matched mean dif-
ferences. It means that we modify Equation (8) to be

ei �N 0,
σ2j
aj

� �
and ui �Nð0, τ2

aj
Þ.8 How to specify power

coefficient to control study quality is flexible. For example,
to down weight unreliable studies, smaller power coeffi-
cients are specified for less reliable studies.42 Because the
specification of power coefficients has many options (eg,
based on different variables and different weights), we echo
the suggestion by Ibrahim and Chen43 that power prior can
be considered as a method for a sensitivity analysis rather
than using only one set of power prior.

6 | BAYESIAN META-ANALYSIS
WITH OUR REAL DATA

The R code for conducting all of the following analyses is
provided in the Supporting Information (some representative
code is presented in Appendix A), and all of the results are
summarized in Table 3. In addition to the Bayesian meta-
analyses, we conducted traditional frequentist analyses (see
Supporting Information for details), and found that the
results from the frequentist analyses were consistent with the
ones in the Bayesian framework with noninformative priors.

6.1 | Testing mean differences for independent
groups

6.1.1 | Fixed-effects meta-analysis

The between-study heterogeneity τ2 is set at 0 in the fixed-
effects meta-analysis by assuming that the 11 studies have
the same true effect size. We specify a normal prior for the

overall true effect size μδ as in Equation (6). μδ is estimated
in Bayesian modeling at 0.10 with an HPD interval of
(0.02–0.18) (see Table 3). Therefore, based on the fixed-
effects meta-analysis, wives have significantly higher marital
satisfaction than husbands. Compared with the result

obtained in integrative data analysis (δ̂=1:08), the estimated
overall true effect size seems smaller (i.e., bμδ =0:10), but the
former is the raw group difference and the latter is the stan-
dardized group difference.

6.1.2 | Random-effects meta-analysis

A random-effects meta-analysis is shown in Equation (8).
The between-study heterogeneity τ2 is freely estimated in
the random-effects meta-analysis while assuming that the
11 studies have different true effect sizes. In addition to the
normal prior for the overall true effect size μδ, an inverse-
gamma prior is specified for the between-study heterogene-
ity τ2. μδ is estimated at 0.11 with an HPD interval of
(0.01–0.20) (see Table 3). Therefore, the overall true effect
size is significantly different from 0 (i.e., wives are more sat-
isfied with their marriage than husbands), which is the same
conclusion from the fixed-effect meta-analysis since τ2 is
estimated to be almost 0.

6.1.3 | Mixed-effects meta-analysis

In a mixed-effects meta-analysis model in Equation (9), we
control the year of survey as a study-level covariate and cen-
ter it at the earliest year, 1991. A normal prior is specified
for β, the effect of the year of survey. μδ is estimated at 0.23
with an HPD interval of (0.04–0.41), which indicates that
the overall true effect size is still significantly different from
0 (i.e., wives are more satisfied with their marriage than hus-
bands) when we are conditioning on the year of conducting
the studies in 1991.

6.1.4 | Meta-analysis with power prior

We use a mixed-effect meta-analysis to illustrate how to
incorporate power priors. This procedure can easily be gen-
eralized to fixed- and random-effects meta-analyses. The
year of survey is the study-level covariate in the illustrated
example. We considered two factors in determining power
a. The first is the compensation of participants and the sec-
ond is whether the study was supported by an extramural
funding (listed in Table 2). When the compensation is
higher, we can predict that participants will devote more
time to respond to questionnaires carefully. When a study is
funded by an extramural grant, we can predict that the
funding may support purchasing resources that improve a
study's quality. Thus, for a funded study (1 for funded

8The conditional posterior distribution of the between-study variance (τ2)
that is calculated by scaling the likelihood is slightly different from the one
directly calculated by raising the likelihood to the specific power, based on
our derivation. In a random-effects meta-analysis with priors Inv
−Gamma(α,β) for τ2 and N(0,φ0) for μδ, by scaling the likelihood to

N θ,
σ2j
aj

� �
, the conditional posterior distribution of τ2 is

f τ2j�ð Þ= IG α+ J
2 ,β+

XJ
j

aj δj−μδ
� �2
2

0BBBB@
1CCCCA. With directly raising the

likelihood to the power of aj, f τ2j�ð Þ= IG α+

XJ
j

aj

2 ,β+

PJ
j

aj δj−μδð Þ2
2

0BBBB@
1CCCCA.

The conditional posterior distributions of the overall true effect size μδ and
the study-specific true effect size δj are the same between the two
approaches.
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studies and 0 for the ones without extramural funding) with
higher compensation, the power is closer to 1. Specifically,
a=fund×0.5+compensation×0.005, and the compensation is
adjusted based on the Consumer Price Index (CPI-U) that is
provided by the US Department of Labor Bureau of Labor
Statistics. For the 11 studies, the power values are 0.37,
0.97, 0.44, 1.12, 0.52, 0.5, 0.43, 0.39, 0.98, 1.02, and 0.75,
respectively. The choice recommended here can be used as a
starting point based on which sensitivity analyses can be
conducted.

The R code using rjags is presented in the Supporting
Information. Since the code is almost the same as the one for
the illustrated standard Bayesian mixed-effects meta-analy-
sis, only the model specification section is presented. After
controlling the information of each study, the overall true
effect size μδ is estimated to be 0.25, which is slightly larger
than the estimated μδ in the standard Bayesian mixed-effects
meta-analysis (see Table 3). And the HPD interval,
(0.05–0.46), does not contain 0. Thus, after controlling the
year of study and the information for each study based on
study quality, we still find that wives are more satisfied with
their marriage than husbands.

We also present the results of the fixed- and random-
effects meta-analyses with power priors in Table 3. Com-
pared with the results without power priors, we still reach
the same conclusion in the fixed-effects and random-effects
meta-analyses that wives have significantly higher marital
satisfaction than husbands.

6.2 | Testing mean differences for matched
groups

6.2.1 | Fixed-effects meta-analysis

A normal prior is specified for the overall true effect size μδ,
and μδ is estimated at 0.09 with an HPD interval of
(0.04–0.15). Thus, by considering that husbands and wives
are matched in families, we found that wives are more satis-
fied with their marriage than their husbands.

6.2.2 | Random-effects meta-analysis

Priors are specified as in the aforementioned random-effects
meta-analysis of independent groups. μδ is estimated at 0.09
with an HPD interval of (0.01–0.19). Therefore, after con-
sidering that husbands and wives are matched in families
and there is between-study heterogeneity, wives have signif-
icantly higher marital satisfaction than their husbands, which
is the same as the conclusion from fixed-effect meta-analysis
since τ2 is estimated to be almost 0.

6.2.3 | Mixed-effects meta-analysis

We use the year of survey as a study-level covariate and cen-
ter it at the earliest year, 1991. Priors are specified as in the
independent groups case. μδ is estimated at 0.22 with an
HPD interval of (0.07–0.39); thus, wives still have signifi-
cantly higher marital satisfaction than their husbands when
we are conditional on the year of survey in 1991. We can
also use power prior with compensation and extramural
funding as criteria for study quality (see Table 3 for
the results).

In summary, different meta-analyses lead to similar infer-
ences in the current example. Thus, the results are relatively
robust to the assumed models. One reason is that the esti-
mated between study heterogeneity is almost 0.

7 | DATA FUSION USING
AUGMENTED DATA-DEPENDENT
PRIORS

We can conduct the integrative data analysis and meta-
analysis with both frequentist and Bayesian modeling. We
have used our real data to illustrate how to use Bayesian
modeling to conduct the aforementioned analyses. Now, we
move to methods that are completely within the Bayesian
framework. As a starting point, we briefly summarize Bayes-
ian integrative data analysis and Bayesian meta-analysis.
They both begin with noninformative priors and adopt the
likelihood from either the whole raw data (i.e., integrative
data analysis) or the whole aggregated data (i.e., meta-analy-
sis). Overall, these two methods can be presented as follows:

f ðθÞ !
LðθjD1,D2,…,DJ Þ

f ðθjD1,D2,…,DJÞ; ð11Þ

where θ is a set of unknown parameters such as regres-
sion coefficients or overall population effect size, D1,D2,
…,DJ can be J sets of raw data or J observed effect sizes
(i.e., aggregated data), f(θ) represents the prior informa-
tion of θ, L(θ|D1,D2,…,DJ) represents the likelihood from
J studies, and f(θ|D1,D2,…,DJ) represents the posterior
distribution of θ. In Equation (11), the prior is only used
once, and the likelihood of all data sets enters the model
simultaneously. As an alternative approach, we can allow
the information of each data set to enter the model
sequentially. Marcoulides3 refers to this approach as data
fusion using AUDPs. In this way, it is intuitive to moni-
tor the influence of each study. That is, the contribution
of each study can be clearly summarized and presented in
terms of parameter estimation and statistical power. For
example, we order the study based on the year of survey,
and we want to know how the conclusion will change
when a subsequently conducted study provides more
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information. When the first study enters the analysis, pos-
terior distributions are first derived with noninformative
priors, and then, the obtained posterior distributions serve
as the prior distributions for the parameters in the second
data set. All the data sets enter the model in turn, and
the posterior distributions at the final step are based on
all of the data sets. The algorithm is presented as
follows:

f ðθÞ !
LðθjD1Þ

f ðθjD1Þ !
LðθjD2Þ

f ðθjD1,D2Þ… !
LðθjDJ Þ

f ðθjD1,D2,…,DJÞ
: ð12Þ

Besides using a noninformative prior f(θ) to initialize
AUDP, AUDP can start with an informative prior. The infor-
mative prior is constructed based on one of the available
studies (an example is presented in the Supporting Informa-
tion). For example, the point estimates and standard error
estimates for parameters in the first study could construct the
initial priors for the unknown parameters in AUDP. Thus,
the algorithm is as follows:

f ðθjD1Þ !
LðθjD2Þ

f ðθjD1,D2Þ… !
LðθjDJ Þ

f ðθjD1,D2,…,DJÞ
: ð13Þ

For both AUDP starting with a noninformative prior
and starting with an informative prior, at the last step, the
Algorithms (12) and (13) are equivalent to the Algorithm
(11) with noninformative prior. That is, the posterior dis-
tribution is f(θ|D1,D2,…,DJ). Thus, theoretically, the order
of the data sets in entering the analysis in AUDP does
not influence the final outcome because if we analytically
calculate the posterior mean and variance based on f(θ|
D1,D2,…,DJ), the posterior mean and variance stay the
same regardless of the order. However, we also need to
note that posterior distributions have stochastic property.
Without analytically deriving the posterior mean and vari-
ance, calculating the posterior mean and variance by finite
posterior samples will not lead to exactly the same results
even when the order stays the same, although the varia-
tion could be so tiny as to be ignorable. When the num-
ber of posterior samples goes to infinity, the posterior
mean and variance are consistent with the analytical
results, and the order has no influence. With finite poste-
rior samples, the cumulative order effect of repeatedly
calculating the posterior mean and variance may exist,
especially when per-study sample size is not large. We
will explore this with our real data.

The AUDP approach can be applied to both raw data
and aggregated data. The fixed-effects, random-effects,
and mixed-effects models (eg, Equations (1), (2), (8), and
(5)) in the integrative data analysis and meta-analysis,

which have been introduced with details, can be analyzed
by the AUDP approach. When the AUDP approach is
applied to aggregated data (i.e., effect size), it is a Bayes-
ian cumulative meta-analysis.9

The AUDP approach can also be coupled with power
priors. In this way, it is easy to control the contribution of
each study and view how the results change when each
study enters the analysis. A power prior f θjD1ð Þ is derived
based on a noninformative prior of θ and the first entered
study by controlling the power of the likelihood,
f θjD1ð Þ/ f θð ÞL θjD1ð Þa. Using a power prior f θjD1ð Þ, the
posterior distribution of θ is updated based on the second
entered data D2, f θjD1,D2ð Þ/ f θjD1ð ÞL θjD2ð Þa2 . Overall,
the algorithm is presented as follows:

f ðθÞ !
L θjD1ð Þa1

f ðθjD1Þ !
L θjD2ð Þa2

f ðθjD1,D2Þ… !
L θjDJð ÞaJ

f ðθjD1,D2,…,DJÞ
:

7.1 | AUDP using power priors with our real
data

We use the aggregated data (observed effect sizes) with
independent groups as an example. In this example, AUDP
is applied to the 11 estimated standardized mean differences
for a fixed-effects model where the overall true effect size μδ
is unknown. Random- and mixed-effects models can also be
analyzed in AUDP. However, when the first few studies
enter the analyses, the models are not identified with a non-
informative prior on τ2 because there are not enough studies
to estimate the between-study variance τ2. Therefore, with
between-study variance, a very informative prior should be
specified for τ2 to initialize the AUDP process. In addition,
we consider the compensation of participants and extramural
funding as criteria to determine the power of the likelihoods
as for the aforementioned meta-analyses with power priors.
The posterior mean and posterior variance of μδ are used to

9Although in the frequentist framework, we also can allow each data set to
enter the analysis sequentially, such as frequentist cumulative meta-
analysis47 and the frequentist cumulative analysis should provide similar
estimation to AUDP at the last step, we do not refer to this process as
frequentist AUDP. In AUDP, our knowledge of parameters keeps updating
when studies enter the analysis. Accordingly, the posterior distributions of
the parameters or the true effect size, which represent the updated
knowledge, will be the data-dependent priors in the next step. On the other
hand, in frequentist cumulative meta-analysis, although the inferences of
parameters are updated after each study enters the analysis, such updated
knowledge (i.e., the estimated overall effect size) will not be used in the
next step. Instead, the next step uses all the raw data from the data sets that
have entered the analysis. Thus, frequentist cumulative meta-analysis is
equivalent to the Bayesian process where a Bayesian meta-analysis is
conducted with a noninformative prior when a new data set is merged with
the previously entered data sets.
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summarize the posterior samples of f μδjD1ð Þ and get
recorded. A normal power prior for D2 is specified with a
mean equal to the posterior mean of f μδjD1ð Þ and a variance
equal to the posterior variance of f μδjD1ð Þ. In the same
way, we can construct the power prior for D3 to DJ

and obtain posterior distributions of f μδjD1,D2,D3ð Þto
f μδjD1,D2,…,DJð Þ. The code for the AUDP approach with
power priors is presented in the Supporting Information.

For the 11 studies, there are numerous ways of ordering
the studies. Even though we expect that the order of the data

sets in entering the analysis will not significantly impact the
final results, we find different orders could provide slightly
different final outcomes but completely different decisions
of rejecting the null hypothesis. As mentioned above, the
difference is due to the fact that the posterior distribution is a
random process; thus, the inferences that are calculated
empirically with a finite sample size are also random. We
illustrate results from three sets of order in Table 4, with the
first order based on the year of survey. Although the hypoth-
esis testing conclusions based on the different orders are

TABLE 4 Results of the fixed-effects model from the AUDP approach with power prior

Study Posterior Mean Posterior Mode Posterior SD QBP Interval HPD Interval

1 3 −0.08 −0.05 0.29 −0.65 to 0.5 −0.63 to 0.51

4 0.24 0.24 0.1 0.05–0.43 0.05–0.43

1 0.23 0.23 0.09 0.05–0.41 0.05–0.41

2 0.22 0.22 0.07 0.09–0.36 0.09–0.36

8 0.22 0.22 0.07 0.09–0.36 0.09–0.35

7 0.22 0.22 0.07 0.09–0.36 0.09–0.36

9 0.17 0.17 0.06 0.05–0.3 0.05–0.3

5 0.16 0.16 0.06 0.05–0.28 0.04–0.27

10 0.14 0.14 0.05 0.03–0.25 0.04–0.25

6 0.12 0.14 0.05 0.03–0.22 0.03–0.21

11 0.11 0.11 0.05 0.02–0.2 0.02–0.2

2 3 −0.08 −0.05 0.29 −0.65 to 0.5 −0.63 to 0.51

5 0.02 0 0.16 −0.28 to 0.33 −0.27 to 0.33

8 0.07 0.08 0.14 −0.2 to 0.34 −0.19 to 0.35

7 0.12 0.12 0.13 −0.13 to 0.36 −0.14 to 0.35

2 0.17 0.17 0.08 0.01–0.34 0.01–0.33

11 0.13 0.13 0.07 0–0.27 0–0.27

10 0.11 0.12 0.06 −0.01 to 0.23 −0.01 to 0.23

1 0.11 0.11 0.06 0–0.23 −0.01 to 0.22

6 0.09 0.09 0.06 −0.03 to 0.2 −0.03 to 0.2

4 0.14 0.15 0.05 0.03–0.24 0.03–0.23

9 0.12 0.13 0.05 0.03–0.21 0.04–0.22

3 4 0.28 0.25 0.1 0.08–0.49 0.07–0.47

9 0.18 0.19 0.08 0.02–0.33 0.02–0.33

8 0.18 0.18 0.08 0.04–0.34 0.03–0.33

3 0.16 0.16 0.08 0.01–0.31 0.01–0.32

10 0.13 0.13 0.07 −0.01 to 0.27 −0.01 to 0.26

2 0.15 0.15 0.06 0.04–0.27 0.03–0.26

1 0.15 0.16 0.06 0.03–0.27 0.04–0.27

7 0.16 0.15 0.06 0.04–0.27 0.05–0.27

11 0.13 0.12 0.06 0.03–0.25 0.03–0.25

5 0.12 0.12 0.06 0.01–0.24 0.01–0.24

6 0.1 0.1 0.06 −0.01 to 0.21 −0.01 to 0.22

Abbreviations: AUDP, augmented data-dependent prior; HPD, highest posterior density; QBP, quantile-based probability.
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different, the values of the posterior summary statistics at the
last step from different orders are, as expected, almost the
same. Because the posterior mean and mode of the parame-
ter of interest are close to 0, with different orders, sometimes
the lower bound of the credible interval is slightly smaller
than 0 and sometimes it is slightly larger than 0. Conse-
quently, the hypothesis testing results are different.10 Table 4
illustrates how each study contributes to the final conclusion.
Take the order of time as an example. The study in 1991
(the first entered study) has an observed effect size of −0.09;
therefore, the posterior mean and mode based on only this
study are negative. The study in 1993 (the second entered
study) has an observed effect size of 0.06 and a sample size
of 343, which increases the posterior mean and mode to be
positive. The study in 1998 (the third entered study) has an
observed effect size of 0.14, which maintains the posterior
mean and mode to be about 0.23. With adding information
from more later studies, the posterior point estimation
(i.e., posterior mean and posterior mode) becomes more sta-
ble, and the newly entered negative effect size only influ-
ences the overall estimation to a small degree. The study in
2016 (the 10th entered study) has an observed effect size of
−0.15 and a sample size of 237, but it barely influences the
posterior estimation. In addition, with more studies, the pos-
terior standard deviation becomes smaller, and the QBP and
HPD intervals generally become narrower, regardless of the
order of the studies.

8 | DATA FUSION USING
AGGREGATED DATA-DEPENDENT
PRIORS

The fourth Bayesian synthesis approach is intuitively appeal-
ing. It chooses one study to serve as the formal study and to
provide likelihood, and all of the other studies are used to
construct a data-dependent prior. We call this approach data
fusion using AGDPs. After deciding the form of the prior
distribution of the parameter θ (i.e., a normal distribution or
a beta distribution), the estimated θs in the data sets are
assumed to be a random sample from the prior. Thus, the
most intuitive way to construct the prior is to summarize the
estimated θs. Then, the hyperparameters in the prior distribu-
tion can be calculated based on these estimated θs. Using the
aforementioned models for raw data or aggregated data, we
can estimate the parameters. The algorithm is as follows:

f ðθjD1,D2,…,DJ−1Þ !
LðθjDJ Þ

f ðθjD1,D2,…,DJÞ:

For example, when the prior f(θ) is a normal distribution and

there are several θ̂s in the literature, f(θ) can be specified as

N mean θ̂
� �

,var θ̂
� �� �

. When the prior f(θ) is an inverse-

gamma distribution (Inv−Gamma(shape=α,scale=β)), the

hyperparameters can be computed based on mean θ̂
� �

and

var θ̂
� �

. More specifically, E θð Þ= β
α−1 is specified at

mean θ̂
� �

, and var θð Þ= β2

α−1ð Þ2 α−2ð Þ is specified at var θ̂
� �

;

thus, α=
mean θ̂ð Þ2
var θ̂ð Þ +2and β=

mean θ̂ð Þ2
var θ̂ð Þ +1

� �
×mean θ̂

� �
.

8.1 | AGDP using our real data

We use a t test assuming unequal variances as an example.
We select one study as the formal study, which provides
likelihood. For the other 10 studies, the sample mean (�y1j
and �y2j) and sample variance (s21j and s22j ) of each group are

computed within each study. Then, we calculate mean �y1j
� �

,

mean �y2j
� �

, mean s21j
� �

, mean s22j
� �

, var �y1j
� �

, var �y2j
� �

,

var s21j
� �

, and var s22j
� �

across studies. To specify normal

priors for μ1 and μ2, and inverse-gamma priors for σ21 and
σ22, the hyperparameters are computed as described in the
previous section based on mean �y1j

� �
, mean �y2j

� �
,

mean s21j
� �

, mean s22j
� �

, var �y1j
� �

, var �y2j
� �

, var s21j
� �

, and

var s22j
� �

. Besides the setting of the hyperparameters, the

code is the same as for the Bayesian integrative analysis.
There are 11 choices for the formal study. Depending on

which studies are used to construct the priors and which
study serves as the formal study, the results vary noticeably.
In some cases, there is a significant gender difference as in
the Bayesian integrative data analysis, while in the other
cases, the effect is nonsignificant. We present the inference
of group mean difference δ=μ1−μ2 from all 11 choices in
Table 5. Furthermore, the credible intervals in AGDP are
wider than those in the t test assuming unequal variance in
the integrative analysis, which means that precision is
smaller in AGDP. The main cause of the diverse results with
different formal studies and wide credible intervals in AGDP
is that the sample size information of the studies that are
used to construct the priors is not considered. Although the
sample mean and sample variance are sufficient statistics for
normal distributions, they do not carry the information of
sample size. Thus, when constructing the priors, we treat the
sample mean and sample variance from a small sample size
(eg, 2) and those from a large sample size (eg, 1000)
equally. The prior distributions can be regarded as from
10 studies, each of which only has a sample size of 2, though
in reality the sample size of each study is much larger than
2. As a consequence, the prior information from the 10 stud-
ies is relatively little compared with the information in the
formal study since the sample size is considered in the for-
mal study when providing likelihood. Therefore, the
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information in the formal study dominates the inferences,
and different formal studies yield different results. As shown
in Table 5, when the observed effect size in the formal study
(dj) is larger, the posterior point estimates tend to be larger;
when the formal study has a larger sample size (n1j+n2j), the
credible intervals tend to be narrower. Therefore, although
AGDP is intuitively appealing, it is fundamentally flawed.
On the other hand, if we calculate the weighted average of
sample means or standardized sample means where the
weight is the inverse of the sample size, the process is the
same as the aforementioned Bayesian meta-analysis. That is,
we conduct a Bayesian meta-analysis based on the 10 stud-
ies. A small difference is that the posterior distributions
serve as the prior distributions for the 11th study.

9 | BAYESIAN POWER FOR
SAMPLE SIZE PLANNING

All of the discussed data synthesis approaches can be
implemented using Bayesian modeling. One important
advantage of Bayesian data syntheses is that they allow
researchers to compute statistical power and plan sample
size more scientifically and cautiously than conventional
frequentist power analysis. The conventional process plugs
the estimates of parameters or effect sizes from the literature
or pilot studies into the power calculation formula. This pro-
cess ignores the fact that the estimates have uncertainty and
treats the point estimates as if they were the population
parameters, which may result in the planned study being
underpowered.6,48 A paradox is that if the population param-
eters were actually known, there would be no need to con-
duct sample size planning for any future studies. In contrast,
Bayesian modeling can naturally consider uncertainty in the
parameter estimates. The previous sections focus on

Bayesian point estimation and credible intervals from poste-
rior distributions, but the posterior distributions themselves
model the uncertainty. Using any of the Bayesian integrative
data analyses, Bayesian meta-analyses, or AUDP, the poste-
rior distributions at the final step combine the information
from multiple studies, which should represent the uncer-
tainty of parameter estimation better than the posterior distri-
butions from any single study. Bayesian power, power
considering uncertainty, and assurance are relatively new
concepts, but they provide a more scientific way to conduct
sample size planning and deserve more attention.

After obtaining the posterior distributions of parameters,
we can draw potential parameters from their posterior distri-
butions and simulate data based on each set of the drawn
parameters. For example, in the random-effects meta-
analysis (Equation (8)), the overall population effect size μδ
and the between-study variance τ2 are drawn from the poste-
rior distribution p(μδ,τ

2|d). Given each set of drawn μδ and τ,
we simulate J study-level predicted true effect sizes (i.e., δ.
prej) by δ.prej�N(μδ,τ

2) (J=11 in our real study). δ.
prej�N(μδ,τ

2) is the so-called posterior predictive distribu-
tion. In rjags, we can add one more line to the original
code to specify the posterior predictive distribution of δ.prej:
td.pre[j]�dnorm(d_mu,pre.phi) is specified after
td[j]�dnorm(d_mu,pre.phi)within the model part
to indicate the distribution of the predicted true effect size δ.
prej. Then, in the output of the MCMC chain, J δ.prejs are
simulated at each iteration, which represents a new data set.
As another example, in the mixed-effects integrative data
analysis (Equation (2)), the fixed effects β00 to β12, the level
1 residual variance σ2ϵ , and the level 2 variance-covariance
matrix Σs are drawn by MCMC sampling in each iteration.
Given the drawn values of parameters, y.preijs are simulated
with a planned sample size (nplan) that will be used in the

TABLE 5 Inference of group mean difference δ=μ1−μ2 in the t test assuming unequal variances from the AGDP approach

Formal dj of the n1j+n2j of the Posterior Posterior Posterior QBP HPD
Study Formal Study Formal Study Mean Mode SD Interval Interval

1 −0.09 114 −0.73 −0.57 2.04 −4.75 to 3.32 −4.72 to 3.33

2 0.28 343 2.44 2.56 0.97 0.51–4.28 0.51–4.28

3 0.14 163 1.29 1.61 1.47 −1.6 to 4.15 −1.58 to 4.15

4 0.21 338 2.08 2.21 1.07 −0.03 to 4.15 0.02–4.19

5 0.22 142 2.23 1.92 1.77 −1.22 to 5.76 −1.37 to 5.57

6 0.29 122 2.7 2.79 1.71 −0.68 to 6.05 −0.69 to 6.02

7 0.02 268 0.33 0.5 1.03 −1.7 to 2.32 −1.67 to 2.34

8 0.06 220 0.69 0.79 1.5 −2.26 to 3.63 −2.29 to 3.56

9 0.05 237 0.55 0.6 1.27 −1.98 to 2.98 −1.91 to 3.04

10 −0.15 198 −1.23 −1.33 1.39 −3.97 to 1.42 −3.97 to 1.42

11 0.01 283 −0.43 −0.27 1.46 −3.34 to 2.4 −3.4 to 2.33

Abbreviations: HPD, highest posterior density; QBP, quantile-based probability.
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future study. In rjags, in addition to the original code, we
need to specify another loop where y.pre[p]�
dnorm(mu[p],pre.phi)and p is from 1 to nplan, and
we also need to specify how many individuals are in each
group and their individual-level covariates. Then, the
predicted observations y.preij are provided in the output of
the MCMC chain.

After obtaining a number of sets of predicted observa-
tions, there are two options for Bayesian power calculation:
the hybrid Bayesian power approach6,49 and the full Bayes-
ian power approach.48,50 The definition of power is different
in the two approaches. In the hybrid Bayesian power
approach, power is calculated in the frequentist way based
on whether the p value of the test is smaller than the α level
(eg, 0.05). Thus, the definition of power is consistent with
conventional frequentist power except that we consider
uncertainty in power. For example, for Model (2), each set
of predicted observations is analyzed by frequentist hypothe-
sis testing, and we count how many times the test of β10 has
a significant result. The proportion of significant results is
the Bayesian power. Du and Wang6 illustrated the hybrid
Bayesian power computation process based on meta-analy-
sis, and R functions were provided. In the full Bayesian
power approach, the Bayesian analysis is conducted again
with a noninformative prior for each set of the predicted
data. Each of the constructed posterior distributions deter-
mines Bayesian significance, and there can be different
criteria (eg, the 95% PHD interval should be narrower than a
specific range). And we record the number of times a spe-
cific criterion is met, which is the Bayesian power. We refer
to Kruschke48 for the different criteria and detailed process.

Regardless of using the hybrid Bayesian power approach
or the full Bayesian power approach, if we keep simulating
predicted data sets and calculating Bayesian power repeat-
edly, in the end, we have a distribution of power instead of a
single value of power. Assurance level and expected power
then can be computed from the power distribution. Assur-
ance level is the probability of the power values larger than
the target power,6 and expected power is the average power
in the power distribution.49 We use the random-effects meta-
analysis with independent groups for an example. The R
functions for calculating the assurance level and the
expected Bayesian power are in Du and Wang.6 On the basis
of the 11 studies, even with 400 participants per group, we
are only 6% certain of achieving the target power of 0.8 or
higher in a future study, and the expected power is 0.3.

10 | CONCLUSION AND
RECOMMENDATION

When synthesizing data from multiple studies, researchers
overwhelmingly turn to meta-analysis, possibly because they

are not aware of other options and therefore cannot appreci-
ate their advantages. To broaden the options considered by
researchers, the goal of this paper has been to introduce sev-
eral Bayesian synthesis approaches for comparing two group
means. Specifically, we present the algorithms for different
approaches and introduce the models for meta-analysis and
integrative data analysis, which also can be used in data
fusion using AUDPs and data fusion using AGDPs. To facil-
itate the practical application of these methods, R code is
provided. The results from the same model but with different
approaches are presented and compared in Tables 3 to 5.
The strengths and limitations of each method and model are
summarized in Table 1.

Integrative data analysis is the most straightforward
approach. After combining multiple data sets into a large
pooled data set, a fixed-effects integrative data analysis is
just the traditional data analysis as if we only had one large
data set. The fixed-effects integrative data analysis is also
the most commonly used integrative data analysis in the
existing literature.15-17 But because data are from different
studies, researchers could monitor between-study heteroge-
neity in a random-effects integrative data analysis. Further-
more, because all the original information is retained in
integrative data analysis, it offers a means of examining the
influence of study-level, pair-level, and/or individual-level
covariates in a mixed-effects integrative data analysis. Note
that because of the extremely small level 1 sample size in
the data sets described here, we could only fit a two-level
model. In particular, for comparing independent group
means, because members are not matched by pairs, we only
estimated the individual-level residual variance and/or the
between-study variance. For comparing matched group
means, the between-pair variance is crucial; otherwise, we
would have had to ignore within-pair interdependence. Thus,
in this case, to estimate both the between-pair variance and
the between-study variance, paired difference scores were
used. To estimate both the individual-level residual variance
and the between-pair variance, raw scores were used.
Despite the strengths of integrative data analysis, it also has
limitations. Most notably, pooling studies requires access to
all the raw data from each study, but raw data are not always
available. Moreover, accessing the raw data is often labor-
intensive, time-consuming, and costly. In addition, the mea-
surements used across studies must be the same or at least
directly comparable (Table 1). In our real data example, the
results vary across different integrative data analysis models
(Table 3).

Among the discussed approaches, meta-analysis is used
most widely. One strength of meta-analysis is that it requires
only sample effect sizes (aggregated data), which are usually
reported. Therefore, meta-analysis is less labor-intensive,
less time-consuming, and cheaper compared with integrative

DU ET AL.56



data analysis. Another strength of meta-analysis is that it
allows for different measurement instruments across studies,
as long as attenuation because of measurement error is
corrected.41 Meta-analysis also allows for fixed-, random-,
and mixed-effects models. Nonetheless, in the mixed-effects
meta-analysis, no individual-level or pair-level covariates
can be incorporated because each study is treated as a unit.
Another limitation is that the sampling distribution of the
observed effect sizes is built on the normality approxima-
tion, which is valid only when the per-study sample size is
relatively large (Table 1). In our real data example, the esti-
mation of the overall population effect size is different
across models depending on whether we were conditioning
on specific levels of covariates or controlled for the power
of the likelihoods (Table 3). Meta-analysis usually provides
very similar estimation with integrative data analysis (data in
integrative data analysis are standardized) when integrative
data analysis does not consider individual-level covariates,
pair-level covariates, and between-pair heterogeneity, and
both use the same measurement instruments.13,36 But it is
difficult to draw the conclusion that meta-analysis and inte-
grative data analysis always provide the same hypothesis
testing results even when the aforementioned criteria are
met, since meta-analysis is based on aggregated data and
loses information to some degree compared with integrative
data analysis. Although Cooper and Patall13 and Lambert
et al36 found that in the long run, meta-analysis has smaller
power than integrative data analysis, in each specific study,
integrative data analysis may yield nonsignificant results
when meta-analysis yields significant results. For example,
in our real data example, the random-effects integrative data
analysis for independent groups does not find a significant
difference between husbands and wives in marital satisfac-
tion, but the random-effects meta-analysis for independent
group finds a significant difference.

In contrast to integrative data analysis and meta-analysis,
most researchers are not familiar with the data fusion
using AUDPs approach, with few exceptions.3 AUDP can
be applied to both raw data and aggregated data (effect
sizes). Noninformative priors or informative priors that
come from one of the studies can be used to initialize the
process. The major strength of AUDP is that the contri-
bution of each study is clearly summarized, and it is easy
to see how the results are updated when each study enters
the analysis. The limitation of AUDP is that the order in
which the data enter the analysis may impact the final
decision of rejecting the null hypothesis in some cases, as
shown in our real data example. But it is also worth not-
ing that, in our example, the posterior mean and mode of
the parameter of interest are close to 0. When the poste-
rior point estimate deviates more from 0, the number of
studies is larger, and per-study sample size is larger, the

Bayesian statistical conclusion will be more consistent
across different orders since the final inferences are drawn
based the posterior distribution f(θ|D1,D2,…,DJ). f(θ|
D1,D2,…,DJ) captures the information of all observations
regardless of the order. To ensure that different orders in
AUDP do not impact the final results substantially and
support different decisions of rejecting the null hypothe-
sis, researchers using this approach should conduct a sen-
sitivity analysis with different orders to investigate
whether and how the estimation varies. One issue not
explored in the current paper is how the order may influ-
ence convergence. If the first entered data set has a small
sample size, nonconvergence may occur when the model
is complex.

If researchers are familiar with the moments of different
distributions (eg, mean and variance), data fusion using
AGDPs seems an intuitive way to construct priors. But
AGDP has two major drawbacks (Table 1). The first one is
that the credible intervals are much wider than those from
the same models in the Bayesian integrative data analyses.
Although AGDP uses the results from multiple studies to
construct priors, it only uses limited information from each
study. In our real data example, we only used the sample
group mean and sample group variance of each study but
did not consider the sample size information of each study.
Although meta-analysis also only uses the observed effect
size from each study, the sampling variance of the observed
effect sizes is calculated based on the per-study sample size.
Thus, the final inferences from meta-analysis consider the
sample sizes of all studies. As a consequence of losing infor-
mation, researchers lose the precision of estimation in
AGDP; therefore, the credible intervals are relatively wide.
Another drawback is that both the point estimates and credi-
ble intervals greatly depend on which study serves as the
formal study to provide likelihood. The reason is that the
sample size is considered in the formal study but not in the
priors. As a result, the priors do not provide much informa-
tion compared with the formal study and have limited influ-
ence on the posterior distributions. Therefore, AGDP is not
recommended, unless we calculate the weighted average of
sample means in AGDP, which makes it the same as Bayes-
ian meta-analysis.

Given the strengths and limitations of each approach
(Table 1), we offer several recommendations. AGDP has
technical problems as summarized above, and thus, it is not
recommended. When the raw data from each study are avail-
able, researchers can use integrative data analysis, meta-
analysis, or AUDP; but an integrative data analysis or
AUDP using the raw data is ideal, because analysis with raw
data is more powerful than analysis with aggregated
data.13,36 If the influence of the individual-level or pair-level
covariates is important to the research question, an
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integrative data analysis is necessary because it keeps the
raw data. If researchers want to further examine the contri-
bution of each study, AUDP using the raw data should be
considered. If only the effect sizes of studies are available, a
meta-analysis and AUDP using the observed effect sizes are
the available options. When researchers plan to control for
study quality, power prior can be paired with any of these
approaches. When the measurements of different studies are
neither the same nor can be equated, even if the raw data are
accessible, a meta-analysis with correcting attenuation
because of measurement errors should be used. In term of
the model, if between-study heterogeneity is documented in
the literature or is anticipated by researchers, random- and
mixed-effects models that freely estimate the between-study
variance should be used; if researchers plan to use covariates
to further explain within-study variance and/or between-
study variance, mixed-effects models should be used. Over-
all, researchers should choose the most appropriate method
and model based on the available information and their spe-
cific research questions.

Bayesian synthesis approaches not only illustrate a way
to estimate the parameters of interest based on the current
information of multiple studies but also provide a way to
cautiously plan sample size for a future study, which is
another refined goal of statistical analysis. More specifically,
Bayesian synthesis approaches compute statistical power
while accounting for the uncertainty in the parameter estima-
tion. Each Bayesian synthesis approach could provide poste-
rior distributions, based on which we can use either the
hybrid Bayesian power approach or the full Bayesian power
approach to calculate the assurance level and the expected
power. Bayesian power considers that the uncertainty of
parameter estimation leads to the uncertainty of power.
Thus, instead of claiming that we are 100% certain of
achieving power of 0.8 in a future study (i.e., the traditional
power concept), achieving power of 0.8 or higher is treated
as a probability event and can be expressed by the assurance
level.

One future direction is to explore the performance of
each method with simulation. Although meta-analysis is
widely used, simulation studies of examining the perfor-
mance of Bayesian meta-analysis are rare. And the perfor-
mance of Bayesian integrative analysis and AUDP is not
widely studied except few papers.3,15 Therefore, examining
the performance of each method under different conditions
(eg, different sample size and prior) should be done in the
future.

In conclusion, each method has its own pros and cons.
Researchers should make the decisions based on their
research questions, data structures, and the features of
Bayesian synthesis approaches summarized in this work.
Furthermore, all of the Bayesian synthesis approaches can

provide Bayesian power with assurance level and expected
power, facilitating sample size planning.
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APPENDIX A: | LEFT HEART GEOMETRY

R code is provided for all the aforementioned analyses in the Supporting Information. In Appendix A, the R code for mixed-
effects integrative data analysis, mixed-effects meta-analysis (with and without a power prior), and AUDP using a power prior
is illustrated as representative examples.

#################

####MIXED-EFFECTS INTEGRATIVE DATA ANALYSIS FOR INDEPENDENT GROUPS

#################

model= "

model {

##Level-2

for (j in 1:J){

beta.j[j, 1:3]~dmnorm(mub[j,1:3], pre.S[1:3,1:3])

mub[j,1]<-beta[1]+beta[2]*s_covariate[j]

mub[j,2]<-beta[3]+beta[4]*s_covariate[j]

mub[j,3]<-beta[5]+beta[6]*s_covariate[j]

}

##Level-1

for (i in 1:N){

y[i]~dnorm(muy[i],pre.phi)

muy[i]<-beta.j[sample[i],1]+beta.j[sample[i],2]*role[i]

+beta.j[sample[i],3]*i_covariate[i]

}

#Priors

for (i in 1:6){

beta[i]~dnorm(0, a)

}

pre.phi ~ dgamma(b,b)

pre.S[1:3,1:3]~dwish(V[1:3,1:3],m)

V[1,1]<-1

V[2,2]<-1

V[3,3]<-1

V[1,2]<-0

V[1,3]<-0

V[2,3]<-0

V[2,1]<-V[1,2]

V[3,1]<-V[1,3]

V[3,2]<-V[2,3]

##Define coefficients of interest

sigma2<-1/pre.phi

cov[1:3,1:3]<-inverse(pre.S[1:3,1:3])

sig.u0<-cov[1,1]

sig.u1<-cov[2,2]

sig.u2<-cov[3,3]

rho.u01<-cov[1,2]/sqrt(cov[1,1]*cov[2,2])

rho.u02<-cov[1,3]/sqrt(cov[1,1]*cov[3,3])

rho.u12<-cov[2,3]/sqrt(cov[3,3]*cov[2,2])

}

"

# Save model

writeLines(model, con="model.txt" )

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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# Load data

dataList = list(

J = 11,

y = y, # Read in the data as long formart

sample = sample,

i_covariate=i_covariate,

s_covariate=s_covariate,

N = N,

role = role,

m = 3,

b = 0.001,

a = 1/10000

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Specifying starting values in two independent chains

beta <- c(0,0,0,0,0,0)

pre.S <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)

pre.phi <- 1

initsList1 = list( beta=beta, pre.S=pre.S, pre.phi=pre.phi,

.RNG.name="base::Wichmann-Hill",.RNG.seed=2018)

beta <- c(1,1,1,1,1,1)

pre.S <- matrix(c(0.5,0.2,0.2,0.2,0.5,0.2,0.2,0.2,0.5),nrow=3)

pre.phi <- 0.5

initsList2 = list( beta=beta, pre.S=pre.S, pre.phi=pre.phi,

.RNG.name="base::Wichmann-Hill",.RNG.seed=2016)

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

parameters = c("beta", "sigma2","sig.u0","sig.u1","sig.u2","rho.u01",

"rho.u02","rho.u12") # Specify the estimated parameters

adaptSteps =500 # Adaptive period

burnInSteps = 2000 # Burn-in period

nChains = 1

thinSteps=100 #Thinning period

numSavedSteps=3000 # The number of kept iterations

nIter = ceiling( numSavedSteps * thinSteps )

jagsModel1 = jags.model( "model.txt" , data=dataList , inits=initsList1,

n.chains=nChains , n.adapt=adaptSteps )

jagsModel2 = jags.model( "model.txt" , data=dataList , inits=initsList2,

n.chains=nChains , n.adapt=adaptSteps )

update( jagsModel1 , n.iter=burnInSteps)

update( jagsModel2 , n.iter=burnInSteps)

codaSamples1 = coda.samples( jagsModel1 , variable.names=parameters,

n.iter=nIter , thin=thinSteps)

codaSamples2 = coda.samples( jagsModel2 , variable.names=parameters,

n.iter=nIter , thin=thinSteps)

mcmcChain1 = as.matrix( codaSamples1 )

mcmcChain2 = as.matrix( codaSamples2 )

mcmcChain<-rbind(mcmcChain1,mcmcChain2)

#################

####MIXED-EFFECTS META-ANALYSIS FOR INDEPENDENT GROUPS

#################

model = "

model {

for (j in 1:J){

for (j in 1:J){
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d[j]~dnorm(delta[j],a0[j]/((n1[j]+n2[j])/n1[j]/n2[j]+ delta[j] 2̂/(2*(n1[j]+n2[j]))))

delta[j] ~ dnorm(mu[j], pre.phi)

mu[j]<-mu.d+beta*s_covariate[j]

}

pre.phi ~ dgamma(b,b)

tau2<-1/pre.phi

mu.d~dnorm(0,a)

beta~dnorm(0,a)

}

"

# Save model

writeLines(model, con="model.txt" )

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Load data

dataList = list(

d=d,

n1=n1,

n2=n2,

s_covariate=s_covariate,

J = 11,

b = 0.001,

a = 1/10000

)

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Specifying starting values in two independent chains

mu.d<-0

pre.phi<-1

beta<-0

initsList1 = list(mu.d=mu.d,pre.phi=pre.phi,beta=beta,

.RNG.name="base::Wichmann-Hill",.RNG.seed=2018)

mu.d<-0.2

pre.phi<-0.5

beta<-0.2

initsList2 = list( mu.d=mu.d,pre.phi=pre.phi,beta=beta,

.RNG.name="base::Wichmann-Hill",.RNG.seed=2016)

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

parameters = c( "mu.d",""tau2","beta") # Specify the estimated parameters

adaptSteps =500 # Adaptive period

burnInSteps = 1000 # Burn-in period

nChains = 1

thinSteps=80 # Thinning period

numSavedSteps=3000 # The number of kept iterations

nIter = ceiling( numSavedSteps * thinSteps )

jagsModel1 = jags.model(

"model.tx" , data=dataList , inits=initsList1,

n.chains=nChains , n.adapt=adaptSteps )

\onecolumn

jagsModel2 = jags.model( "model.txt" , data=dataList , inits=initsList2,

n.chains=nChains , n.adapt=adaptSteps )

update( jagsModel1 , n.iter=burnInSteps)

update( jagsModel2 , n.iter=burnInSteps)

codaSamples1 = coda.samples( jagsModel1 , variable.names=parameters,

n.iter=nIter , thin=thinSteps)
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codaSamples2 = coda.samples( jagsModel2 , variable.names=parameters,

n.iter=nIter , thin=thinSteps)

mcmcChain1 = as.matrix( codaSamples1 )

mcmcChain2 = as.matrix( codaSamples2 )

mcmcChain<-rbind(mcmcChain1,mcmcChain2)

#################

####MIXED-EFFECTS META-ANALYSIS FOR INDEPENDENT GROUPS WITH POWER PRIOR

#################

model = "

model {

for (j in 1:J){

d[j] ~ dnorm(td[j],a0[j]/((n1[j]+n2[j])/n1[j]/n2[j]+ td[j] 2̂/(2*(n1[j]+n2[j]))))

td[j] ~ dnorm(delta[j], a0[j]*pre.phi)

delta[j] <- d_mu+beta*s_covariate[j]

}

pre.phi ~ dgamma(0.001,0.001)

sigma <- 1/pre.phi

d_mu ~ dnorm(mu0,tau2)

beta ~ dnorm(mu0,tau2)

}

"

#################

####AUDP USING POWER PRIOR (FIXED-EFFECTS MODEL WITH EFFECT SIZE ESTIMATES FROM INDEPENDENT GROUPS)

#################

J=11

out.table<-matrix(NA, nrow = J, ncol =9)

colnames(out.table)<-c(",`length`,`estimate.mean`,`estimate.mode`,`SD`,

`CI.L`,`CI.U`,`HPD.L`,`HPD.U`)

p.mean<-c()

p.sd<-c()

set.seed(2004)

order<-sample(1:J,J,replace=FALSE)

d<-d[order]

n1<-n1[order]

n2<-n2[order]

a0<-a0[order]

for (j in 1:J){

model = "

model {

d[j]~dnorm(mu.d,a0[j]/((n1[j]+n2[j])/n1[j]/n2[j]+ mu.d 2̂/(2*(n1[j]+n2[j]))))

mu.d~dnorm(mu0,a)

}

"

writeLines(model, con="model.txt")

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

if (j==1){

mu0<-0

a<- 1/10000

} else {

mu0<- p.mean[j-1]

a<-1/(p.sd[j-1] 2̂)}

dataList = list(

d=d,
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n1=n1,

n2=n2,

a0=a0,

j = j,

mu0 = mu0,

a = a

)

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Specifying starting values in two independent chains

mu.d<-0

initsList1 = list( mu.d=mu.d,

.RNG.name="base::Wichmann-Hill",.RNG.seed=2018)

mu.d<-0.2

initsList2 = list( mu.d=mu.d,

.RNG.name="base::Wichmann-Hill",.RNG.seed=2016)

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

parameters = c( "mu.d") # Specify the estimated parameters

adaptSteps =500 # Adaptive period

burnInSteps = 2000 # Burn-in period

nChains = 1

thinSteps=10 # Thinning period

numSavedSteps=3000 # The number of kept iterations

nIter = ceiling( numSavedSteps * thinSteps )

jagsModel1 = jags.model("model.txt" , data=dataList , inits=initsList1,

n.chains=nChains , n.adapt=adaptSteps )

jagsModel2 = jags.model("model.txt" , data=dataList , inits=initsList2,

n.chains=nChains , n.adapt=adaptSteps )

update( jagsModel1 , n.iter=burnInSteps)

update( jagsModel2 , n.iter=burnInSteps)

codaSamples1 = coda.samples( jagsModel1 , variable.names=parameters,

n.iter=nIter , thin=thinSteps)

codaSamples2 = coda.samples( jagsModel2 , variable.names=parameters,

n.iter=nIter , thin=thinSteps)

mcmcChain1 = as.matrix( codaSamples1 )

mcmcChain2 = as.matrix( codaSamples2 )

mcmcChain<-rbind(mcmcChain1,mcmcChain2)

for (i in 1:1){

p.mean[j]<- sum.stat(mcmcChain[,i])[3]

p.sd[j]<- sum.stat(mcmcChain[,i])[4]

out.table[j,]<-c(j,sum.stat(mcmcChain[,i]))

}

}

out.table<-cbind(order,d,out.table)
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